Chapter-2 Program Development-I

 CHAPTER-2
PROGRAM DEVELOPMENT-I
2.1 PROGRAM LAYOUT

A simple FORTRAN program may be sub-divided into the blocks shown below:

PROGRAM program-name

IMPLICIT NONE

[specification part]

[execution part]

[subprogram part]

END [PROGRAM [program-name]]
 Here are some additional notes:
· Contents in [] are optional.

· Keyword IMPLICIT NONE is highly recommended.

· A program starts with the keyword PROGRAM,

· followed by a program name,

· followed by the IMPLICIT NONE statement,

· followed my some specification statements,

· followed by the execution part,

· followed by a set of internal subprograms,

· followed by the keywords END PROGRAM and the program name.

· For improving readability, your program should add comment lines.

 - All characters following an exclamation mark, !, except in a character string,
 are commentaries, and are ignored by the compiler

 - Blank line is also interpreted as a comment line.
An example FORTRAN program is given below:
1. PROGRAM my_first_program

2. ! Purpose:

3. ! To illustrate some of the basic features of a FORTRAN program.

4. Implicit none

5. ! Declare the variables used in this program.

6. INTEGER :: i, j, k ! All variables are integers

7. ! Get the variables to multiply together.

8. WRITE (*,*) 'Enter the numbers to multiply:’
9. READ (*,*) i, j

10. ! Multiply the numbers together

11. k = i * j

12. ! Write out the result.

13. WRITE (*,*) 'Result = ', k

14. ! Finish up.

15. END PROGRAM

The program name: as shown in the above sample program, the name of the program, i.e. my_first_program, is optional. If it is used, however, it should not be confused with the filename, i.e. the name of the file that holds the above sequence of instructions, i.e. the program. For instance, the above program could be saved (stored on a disk) with the name Prog1.f95. This means the file Prog1.f95 holds the program called my_first_program. Only the name of the file, i.e. Prog1.f95, could be viewed in any listing of files, as for example by using the DIR command.

Statements (specification & execution parts): these are the sequence of characters that are used to convey different commands to the computer. If a statement extends over two lines, this should be indicated by the symbol & as the last non-blank character part of the statement which is to be continued on the next line. For instance,
· A = 174.5 * Year &

· + Count / 100

 is equivalent to the following

A = 174.5 * Year + Count / 100

Note that & is not part of the statement.

Line 6 in the above program is an example of a declaration statement. It tells to the compiler that the variables i , j and k are integer variables. Other variables can be declared similarly. Lines 8,9,11.13, and15 constitute the executable statement in the program given. Executable statements could be:
· Write (or read) statement,

· Assignment statement, where a variable attains a value. An example is line 11.

· IF statement. (Shall be dealt with later)
· DO statements. (Shall be dealt with later), etc

All statements except the assignment statement begin with a FORTRAN keyword. A keyword is a sequence of characters that have special meaning in FORTRAN. Examples of keywords already introduced are: PROGRAM, IMPLICIT NONE, and WRITE, REAL, READ and END.

Note: blanks are not allowed within these keywords. For instance, RE AD is not allowed. However blanks should separate between keywords and other names.

The last executable statement of a FORTRAN program is the END statement. There could, however, be comments lines after the END statement. The essential part of the END statement is the keyword END. The name of the program could also be added though. For example line 15 could also be written as

15. END PROGRAM my_first_program
2.2 FORTRAN VARIABLES AND THEIR TYPES
FORTRAN recognizes five intrinsic (built-in) data types. These are: REAL, INTEGER, COMPLEX, CHARCTER, and LOGICAL data types. In addition to these, it is also possible in F95 to define ones own data types, which are then called derived data types.
2.3 NAMES AND VARIABLES
Variables are essentially locations of computer’s memory whose contents could be of any one of the above data types and could be changed in the program. Such memory locations could then be given ‘names’ for easy reference. For instance, in the first example program test, i, j and k are names of three ‘integer’ variables. The rule for the naming of variables requires that

· A name must contain at least 1 and a maximum of 31 characters,

· The accepted characters for names are the 26 letters and the 10 digits and the underscore (_),

· A name must start with a letter,
· FORTRAN names or identifiers are case insensitive.
· Correct Examples:
· MTU, MI, John, Count

· I, X

· I1025, a1b2C3, X9900g

· R2_D2, R2D2_, A__

· Incorrect Examples:

· M.T.U.: only letters, digits, and underscores can be used

· R2-D2: same as above

· 6feet: the first character must be a letter
· _System: same as above
Declaring the type of a FORTRAN variable is done with type statements. It has the following form:

type-specifier :: list

where the type-specifier is one of the following and list is a list of variable names separated with commas:

· INTEGER : the variables in list can hold integers

· REAL: the variables in list can hold real numbers

· COMPLEX: the variables in list can hold complex numbers

· LOGICAL: the variables in list can hold logical values (i.e., true or false)
· CHARACTER: the variables in list can hold character strings
The double colon (::) is required if it is intended to give an intial value to the variable other wise a space is enough between the type-specifier and list.
Types INTEGER and REAL are easy. The following are examples:

Variables ZIP, Mean and Total are of type INTEGER:

· INTEGER :: ZIP, Mean, Total

Variables Average, error, sum and ZAP are of type REAL:
· REAL:: Average, error, sum, ZAP
Type CHARACTER is more involved. Since a string has a length attribute, a length value must be attached to character variable declarations. There are two ways to do this:
· Use CHARACTER (LEN=i) to declare character variables of length i. For example,

Name and Street are character variables that can hold a string of no more than 15 characters:

· CHARACTER(LEN=15) :: Name, Street

· Use CHARACTER (i) to declare character variables of length i. That is, there is no LEN= in the parenthesis. For example,

Name and Street are character variables that can hold a string of no more than 15 characters:

· CHARACTER(15) :: Name, Street

· If a variable can only hold a single character, the length part can be removed. The following three declarations are all equivalent:

· CHARACTER(LEN=1) :: letter, digit

· CHARACTER(1) :: letter, digit

· CHARACTER :: letter, digit

Note: FORTRAN has also IMPLICIT type identification. According to this, all variables whose names start with the letters i, j, k, l, m, n, o, p, q are identified as INTEGERS whereas all the rest letters are reserved for REAL variables. This rule could be avoided if the statement IMPLICIT NONE is included in the program immediately after any PROGRAM statement. This is highly recommended.

VARIABLE INITIALIZATION

 A variable can be considered as a box that can hold a single value. However, initially the content of a variable (or a box) is empty. Therefore, before one can use a variable, it must receive a value. Do not assume the compiler or computer will put some value, say 0, into a variable. There are at least two ways to put a value into a variable:

· using an assignment statement
· reading a value from keyboard or other device with a READ statement.
Do the following to initialize a variable with the value of an expression:

· add an equal sign (=) to the right of a variable name

· to the right of the equal sign, write an expression. It is important to note that all names in the expression must be constants or names of constants.
Constants or more formally literal constants are the tokens used to denote the value of a particular type. FORTRAN has five types of constants: integer, real, complex, logical, and character string.
Initializing a variable is only done exactly once when the computer loads your program into memory for execution. That is, all initializations are done before the program starts its execution. Using un-initialized variables may cause unexpected result.
The following example initializes variables Offset to 0.1, Length to 10.0, and tolerance to 1.E-7.

· REAL :: Offset = 0.1, Length = 10.0, tolerance = 1.E-7

The following example initializes variables State1 to "MI", State2 to "MN", and State3 to "MD".

· CHARACTER(LEN=2) :: State1 = "MI", State2 = "MN", State3 = "MD"
The PARAMETER Attribute
In many places, one just wants to assign a name to a particular value. For example, keep typing 3.1415926 is tedious. In this case, one could assign a name, say PI, to 3.1415926 so that one could use PI rather than 3.1415926. To assign a name to a value, one should do the following:

· Add PARAMETER in front of the double colon (::) and use a comma to separate the type name (i.e., REAL) and the word PARAMETER

· Following each name, one should add an equal sign (=) followed by an expression. The value of this expression is then assigned the indicated name.

· After assigning a name to a value, one can use the name, rather than its value throughout the program. The compiler would convert that name to its corresponding value.

· It is important to note that the name assigned to a value is simply an alias of the value. Therefore, that name is not a variable.

· After assigning a name to a value, that name can be used in a program, even in subsequent type statements.

In the example below, E is a name for the real value 2.71828, while PI is a name for the real value 3.141592:

· REAL, PARAMETER :: E = 2.71828, PI = 3.141592

In the example below, Name is a name for the string 'John' and State is a name for the string "Utah"

· CHARACTER(LEN=4), PARAMETER :: Name = 'John', State = "Utah"

It is important to know when assigning a name to a string:

If the string is longer, truncation to the right will happen. In the following case, since the length of the string "Smith" is 5 while the length of Name is 4, the string is truncated to the right and the content of Name is "Smit"

· CHARACTER(LEN=4), PARAMETER :: Name = 'Smith'

If the string is shorter, spaces will be added to the right. Since the string "LA" is of length 2 while the name City is of length 4, two spaces will be padded to the right and the content of City becomes "LA "

· CHARACTER(LEN=4), PARAMETER :: City = "LA"

assumed length specifierThis is where the comes in. That is, FORTRAN allows the length of character name to be determined by the length of s string. In the example below, names Name and City are declared to have assumed length. Since the lengths of 'John' and "LA" are 4 and 2, the length of the names Name and City are 4 and 2, respectively.

· CHARACTER(LEN=*), PARAMETER :: Name = 'John', City = "LA"

Initialization of variables could also be done using the DATA statement, which has the following syntax: DATA variable1, variable2,… / value1, value2,…/

Example, if it is intended to initialize variables X and Y to 5.0 and 10.0 respectively, then use

 DATA X, Y /5.0,10.0/

Character variables are initialized in the following way

 DATA Name /’Abdul’/, i.e. put the value in single or double quotes.

2.4 NUMERIC EXPRESSIONS AND NUMERIC ASSIGNMENT

FORTRAN has four types of operators: arithmetic, relational, logical, and character. The following is a table of these operators, including their priority and associativity.
	Type
	Operator
	Associativity

	Arithmetic
	**
	right to left

	
	*
	/
	left to right

	
	+
	-
	left to right

	Relational
	<
	<=
	>
	>=
	==
	/=
	none

	Logical
	.NOT.
	right to left

	
	.AND.
	left to right

	
	.OR.
	left to right

	
	.EQV.
	.NEQV.
	left to right

Some Useful Notes:

· In the table, the operator on the top-most row (**) has the highest priority (i.e., it will be evaluated first) while the operators on the bottom-most row (i.e., .EQV. and .NEQV.) have the lowest priority. The operators on the same row have the same priority. In this case, the order of evaluation is based on their associativity law.
· In addition to addition +, subtraction -, multiplication * and division /, FORTRAN has an exponential operator **. Thus, raising X to the Y-th power is written as X**Y.
· Operators + and - can also be used as unary operators, meaning that they only need one operand. For example, -A and +X. The former means change the sign of A, while the latter is equivalent to X.

· Unary operators + and - have the same priority as their binary counterparts (i.e., addition + and subtraction -). As a result, since ** is higher than the negative sign -, -3**2 is equivalent to -(3**2), which is -9.

· For arithmetic operators, the exponential operator ** is evaluated from right to left. Thus, A**B**C is equal to A**(B**C) rather than (A**B)**C

Note:

1. Parentheses () have always the highest precedence

2. If an arithmetic expression involves more than one operators of equal precedence, they are then evaluated from left to right, EXCEPT exponentiation, which are evaluated from right to left.

In the following example, brackets are used to indicate the order of evaluation. The result is 4 rather than 4.444444 since the operands are all integers.

· 2 * 4 * 5 / 3 ** 2

· --> [2 * 4] * 5 / 3 ** 2

· --> 8 * 5 / 3 ** 2

· --> [8 * 5] / 3 ** 2

· --> 40 / 3 ** 2

· --> 40 / [3 ** 2]

· --> 40 / 9

· --> 4

In the following example, x**0.25 is equivalent to computing the fourth root of x. In general, taking the k-th root of x is equivalent to x**(1.0/k) in FORTRAN, where k is a real number.

· 1.0 + 2.0 * 3.0 / (6.0*6.0 + 5.0*44.0) ** 0.25

· --> 1.0 + [2.0 * 3.0] / (6.0*6.0 + 5.0*44.0) ** 0.25

· --> 1.0 + 6.0 / (6.0*6.0 + 5.0*55.0) ** 0.25

· --> 1.0 + 6.0 / ([6.0*6.0] + 5.0*44.0) ** 0.25

· --> 1.0 + 6.0 / (36.0 + 5.0*44.0) ** 0.25

· --> 1.0 + 6.0 / (36.0 + [5.0*44.0]) ** 0.25

· --> 1.0 + 6.0 / (36.0 + 220.0) ** 0.25

· --> 1.0 + 6.0 / ([36.0 + 220.0]) ** 0.25

· --> 1.0 + 6.0 / 256.0 ** 0.25

· --> 1.0 + 6.0 / [256.0 ** 0.25]

· --> 1.0 + 6.0 / 4.0

· --> 1.0 + [6.0 / 4.0]

· --> 1.0 + 1.5

· --> 2.5

Exercise: Give the precedence in the following expressions and evaluate if A = 3, B = 4, C = 5.

a) A*B+ C

b) A*(B+C)

c) C+(B/A)**3/B*2

d) A**B**C – B**A**C

One important point regarding arithmetic expressions is the mode of operation, i.e. whether it is evaluated in REAL or INTEGER mode. The computer stores real and integers numbers in a slightly different way and hence it is important to consider the mode of operation when writing arithmetic expressions. All numbers without the decimal point are taken as integers. Thus for example 4 is an integer but 4.0 is taken as real and this has a bearing on the outcome of an arithmetic expression. The following are the general rules and should always be kept in mind.

1. If an expression involves only, say integer variables, then the result is also rounded to the next lower integer, i.e. the fractional part is lost.

Example: 4 / 5 is evaluated to 0, whereas 4.0 / 5.0 results 0.8

2. In mixed-mode expressions, i.e. both reals and integers are involved; the rule is that the weaker or simpler is converted into the stronger type. For instance, if an expression involves reals and integers, the final result is evaluated in real mode. Note that this applies to each operation in the expression separately.
Example: 6/4/2.0 is evaluated to 0.75
Numeric Assignment

Its general form is: Variable = assignment

The equal sign does not have the same meaning as the equal sign in mathematics and should be read as “becomes”. In this way the assignment

N = N + 1 is meaningful, and means ‘increase the value of N by 1’, whereas the mathematical equation n = n + 1 is not generally meaningful.

2.5 INTRINISIC FUNCTIONS
FORTRAN recognizes many of the commonly used functions. They are termed intrinsic (or built-in) functions. The following is a list of some useful intrinsic functions.

ABS(X): absolute value of integer, real or complex

ACOS(X): arc cosine of X

ASIN(X): arc sine of X

ATAN(X): arc tangent of X in the range -(/2 to (/2

COS(X): cosine of real or complex X

COSH(X): hyperbolic cosine of X

EXP(X): value of the exponential function ex, where X may be real or complex

INT(X): converts integer, real or complex X to integer type truncating towards zero

LOG(X): natural logarithm or real or complex X

LOG10(X): base 10 logarithm

MAX(X1, X2[, X3, …]):
maximum of two or more integer or real arguments

MIN(X1, X2[, X3, …]):
minimum of two or more integer or real arguments

REAL(X): converts integer, real or complex to real type

SIN(X): sine of real or complex X

SINH(X): hyperbolic sine of X

SQRT(X): square root of real or complex X

TAN(X): tangent of X

TANH(X): hyperbolic tangent of X
2.6 SIMPLE INPUT AND OUT PUT
Using the READ statement one is able to input a variable while the program is running. The simple READ has the following syntax:

· READ*, variable1, varible2, … or READ(*,*) :: variable1, varible2, …

The variables are to be given on one line (separated by comas, or blanks) or they could be given on different lines. The PRINT statement is used for a simple output to the screen. The following is the syntax:
· PRINT*, list or WRITE(*,*):: list
Where list is the list of the items to be displayed.

Through these two statements one can write a simple program that can interact with the user, i.e. the one that finally runs the program.
Exercise: Prepare a program that reads three numbers from the keyboard and prints their sum on the screen.

Operator �
Precedence �
Meaning �
Example �
�
** * �
1 2 �
Exponentiation 2 ** 4 (=24)Multiplication 2 * A �
�
/ �
3 �
DivisionB / DELTA �
�
+ �
3 �
Addition or unary plus A + 6.9 �
�
–– �
– �
– �
�

PAGE
8
CEng-2001 (Computer Programming)

